Neural networks for quantum inverse problems
نویسندگان
چکیده
Abstract Quantum inverse problem (QIP) is the of estimating an unknown quantum system from a set measurements, whereas classical counterpart distribution observations. In this paper, we present neural-network-based method for QIPs, which has been widely explored its counterpart. The proposed utilizes quantumness QIPs and takes advantage computational power neural networks to achieve remarkable efficiency state estimation. We test on maximum entropy estimation ? partial information both numerically experimentally. Our yields high fidelity, robustness numerical experiments optical experiments.
منابع مشابه
Artificial Neural Networks for the Solution of Inverse Problems
In this work we present a variational formulation for neural networks. Within this formulation, the learning problem for the multilayer perceptron lies in terms of finding a function which is an extremal for some functional. As we will see, a variational formulation for neural networks provides a direct method for the solution of general variational problems, in any dimension and up to any degr...
متن کاملApplications of Topological Derivatives and Neural Networks for Inverse Problems
Numerical method of identification for small circular openings in the domain of integration of an elliptic equation is presented. The method combines the asymptotic analysis of PDE’s with an application of neural networks. The asymptotic analysis is performed in singularly perturbed geometrical domains with the imperfections in form of small voids and results in the form of the so-called topolo...
متن کاملInverse Problems for Quantum Trees
Three different inverse problems for the Schrödinger operator on a metric tree are considered, so far with standard boundary conditions at the vertices. These inverse problems are connected with the matrix Titchmarsh-Weyl function, response operator (dynamic Dirichlet-to-Neumann map) and scattering matrix. Our approach is based on the boundary control (BC) method and in particular on the study ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
NETT: Solving Inverse Problems with Deep Neural Networks
Recovering a function or high-dimensional parameter vector from indirect measurements is a central task in various scientific areas. Several methods for solving such inverse problems are well developed and well understood. Recently, novel algorithms using deep learning and neural networks for inverse problems appeared. While still in their infancy, these techniques show astonishing performance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: New Journal of Physics
سال: 2022
ISSN: ['1367-2630']
DOI: https://doi.org/10.1088/1367-2630/ac706c